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METHOD OF ANALYZING AND GENERALIZING EXPERIMENTAL DATA ON THE 

FREE MOTION OF TOLUENE 

G. I. Isaev UDC 536.24 

An equation describing the heat transfer in the free motion of toluene about a 
horizontal tube and at supercritical pressures is proposed. 

The results of analyses of experimental data by various authors show that the laws of 
convective heat transfer in free convection at supercritical pressures of the heat carrier 
differ from the laws of heat transfer in the subcritical region of states of the material. 
In a series of works, the influence of individual factors on the heat-transfer coefficient 
has been noted [I, 2]. Therefore, generalization of experimental data at supercritical pres- 
sures of different heat carriers by means of a single critical equation with free convection 
is very difficult. The basic difficulties are associated with taking account of the influence 
of change in physical properties of the given fluid on the heat-transfer coefficient. The 
means of taking account of this phenomenon adopted by individual researchers have been dif- 
ferent. Many have taken the well-known relations obtained for the Nusselt number (Nuo) and 
added corrections that take account of the variability of the physical properties. 

At present, there exist a series of critical relations for calculating the heat-transfer 
coefficient with free convection at supercritical pressures. One was proposed in [3] on the 
basis of the results of investigating the heat transfer of carbon dioxide with free convection 
in horizontal tubes, in the form 

Nu = 0.152 Ra 1/~ (PrJPr  f) ~ (1) 
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Fig. i. Curves of the dependence Nu/(Prc/Prf) ~ = f(Ra): a) 
calculated according to [3]; b) from Eq. (2). 

This equation describes the heat transfer with an error of +-20%. The Nusselt and Rayleigh 
numbers were determined from the following expressions: Nu = ~d/l and Ra = gp(pf- Pc)dSPr/~ 2. 
In determining %, 0, ~, Pr, the mean temperature of the moving layer was adopted, i.e., t = 
(t c + tf)/2. 

In [3], it was noted that Eq. (i) is valid for Ra = 107-101~ and for Prc/Pr f = 0.5-3.0. 
The experimental data of [i, 2], obtained for Rayleigh numbers in the range 106 to l0 s , may 
be compared with the given dependence. From the results of the calculations, curves of the 
dependence Nu/(Prc/Prf) ~ = f(Ra) have been plotted in logarithmic coordinates (Fig. la). 
It is evident from Fig. la that, with decrease in the Rayleigh number from 107 , the error in- 
creases and reaches 20% and above. When Ra > 107 , the maximum error is 13%. In this treat- 
ment, the basic mass of experimental points from [i, 2] lie above the calculated curve in the 
whole range of Rayleigh numbers. This is mainly associated with the choice of the constants 
(c and n) appearing in Eq. (i) o It is known from the classical literature that, with free 
motion of the fluid at subcritical pressures around horizontal tubes and at 103 < Grf,dPrf < 
i0~ c = 0.50 and n = 0.25 [4]. Since the experimental data of [i, 2] were obtained at l06 < 
Ra < 10s~ they were generalized by the criterial relation 

Nu = 0.50 Ra ~ (Pro/Prf) ~ (2) 

i n  which  t h e  p h y s i c a l  p a r a m e t e r s  were chosen  i n  a c c o r d a n c e  w i t h  t h e  d e t e r m i n i n g  t e m p e r a t u r e ,  
a n a l o g o u s l y  t o  [ 3 ] .  The r e s u l t s  o f  c a l c u l a t i o n s  by Eq. (2) a r e  a l s o  shown i n  t he  l o g a r i t h m i c  
c o o r d i n a t e s  N u / ( P r c / P r f )  ~  = f (Ra)  (F ig .  l b ) .  I t  i s  e v i d e n t  f rom F i g .  lb  t h a t ,  when Ra < 
i ~  7, t he  e x p e r i m e n t a l  p o i n t s  l i e  on the  c a l c u l a t e d  c u r v e  w i t h  a maximum e r r o r  o f  +2.5%~ 
w h i l e  when Ra > 1 . 2 . 1 0  7 t h e  s p r e a d  of  t he  e x p e r i m e n t a l  p o i n t s  r e a c h e s  +10%. This  e q u a t i o n  
f o r  t o l u e n e  a c c o r d i n g  t o  t h e  d a t a  of [1,  2] has  been  v e r i f i e d  i n  the  w a l l  t e m p e r a t u r e  r a n g e  
from room t e m p e r a t u r e  to  723~ 

Thus ,  on the  b a s i s  o f  t h e  B e s c h a s t n o v - - P e t r o v  e q u a t i o n ,  c r i t e r i a l  Eq. (2) has  been  p r o -  
p o s e d ,  a n d m a y b e  recommended f o r  c a l c u l a t i n g  the  h e a t  t r a n s f e r  i n  the  r ange  Ra < 10 ~. 

NOTATION 

Nu, Ra, Pr, Gr, Nusselt, Rayleigh, Prandtl, and Grashof numbers; ~, heat-transfer coef- 
ficient~ W/m2.~ %, thermal conductivity, W/m-~ p, density, kg/m3; ~, dynamic viscosity, 
N/m.sec~ d, tube diameter, m. 

i. 

2. 
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DETERMINATION OF THE TEMPERATURE-DEPENDENT VARIATION OF THE 

THERMAL CONDUCTIVITY OF A COMPOSITE MATERIAL FROM THE DATA 

OF A NONSTATIONARY EXPERIMENT 

E. A. Artyukhin and A. S. Okhapkin UDC 536.24.02 

We consider the construction of an iteration algorithm for reconstructing the tem- 
perature-dependent variation of the thermal conductivity in the generalized energy 
equation from the data of temperature measurements at one or more points in the 
interior of the body. 

In investigating the thermophysical characteristics of composite materials, it often be- 
comes necessary to use new methods for the analysis and processing of experimental data~ 
These methods must provide a possibility of processing the results of a nonstationary thermal 
experiment and obtaining the maximum amount of reliable information concerning the material 
under study when the accuracy characteristics of the measurement systems are limited [i]. 

The intensive development of the theory and the expansion of the fields of practical 
application of methods for the solution of inverse problems in heat exchange have led to 
their widespread use in thermophysical investigations. 

A particularly timely use of the inverse-problem apparatus is its application to the in- 
vestigation of the thermophysical characteristics of high-temperature composite materials 
under nonstationary conditions. Such an approach enables us to eliminate the problem of 
simulating the structure of the material and the character of the internal processes under 
nonstationary thermal influences. Furthermore, in this case there is a possibility of con- 
sidering the problem of thermophysical investigations as a complex problem in the simul- 
taneous determination of many interrelated characteristics. 

Inverse problems usually belong to the class of ill-posed problems of mathematical 
physics [2]. In solving boundary-walue and coefficient-type inverse problems in heat conduc- 
tion, iterative methods have been found to be very effective [3-5]. 

The basic purpose of the present study is to investigate the possibilities of con- 
structing iteration algorithms of the gradient type for reconstructing the thermophysical 
characteristics of a composite material from the solution of a coefficient-type inverse prob- 
lem for the nonlinear generalized heat-conduction equation. We analyze a mathematical model 
which takes account of the processes of thermal decomposition and filtration [i]~ 

We shall consider the following problem. For a given mathematical model of the process 
of heat and mass exchange during the intense heating of a composite heat-shielding material 
and known boundary conditions, it is required to reconstruct the temperature-dependent varia- 
tion of the thermal conductivity %(T) and the temperature field T(x, T) from the data of tem- 
perature measurements at one or more interior points of the body under investigation. The 
mathematical model of the process being investigated has the following form: 

OT 0 (~(T) O__TT ~ Ohm(T) OT Om~ h~(T), 
c(T) 

0"~ Ox ~ Ox 1, " OT Ox Ox 

Y(O, T) = i~('~), (2)  

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 44, No. 2, pp. 274-281, February, 
1983. Original article submitted October 5, 1981. 
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